/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Pattern Catalog: Command

/v

AARHUS UNIVERSITET Command

* In my word processor system | would like the
user to configure what the F1 button does freely
— Like ‘save’ or ‘open new file’ or ?

— Or perhaps record a macro of key strokes in F1
* F1 =>insert text ‘iskagefabrik’ at the cursor position

 But how to code this?

A parametric solution?
public void FlPress() |

editor.showFileDialogAndOpen () ; No. Can Only handle
or those case | have

editor.save (); imagined in advance ®
or

some other behavior?

}

/v

AARHUS UNIVERSITET 3-1'2

@ Encapsulate what varies. I need to handle behavior as objects that can be assigned
C vs or buttons, that can ut into macro lists, etc. The obvious responsi-
to keys or buttons, that be put into O lists, etc. The obvio espo
bility of such a “request object” is to be executable. The next logical step is to
require that it can “un-execute” itself in order to support undo.

@ Program to an interface. The request objects must have a common interface to
allow them to be exchanged across those user interface elements that must enact
them. This interface is the Command role that encapsulate the responsibility
“execute” (and potentially “undo”).

@ Object composition. Instead of buttons, menu items, key strokes hard coding
behavior, they delegate to their assigned command objects.

editor.save ();

becomes some thing like

Command saveCommand = new SaveCommand(editor);
saveCommand . execute ();

VeV Our Command Interface

AARHUS UNIVERSITET
* Pretty simple!

/** The interface defining the Command role */
interface Command {

public woid execute();

public woid undo () ;

}

* Any instance of this represents one method invocation to
be made to one object
— Example:

class PSInsertS5Cent implements Command {
private PayStation ps;

public ™mmigl, PSInsertSCent (PayStation ps)
ps.addPayment(5) a } this.ps = ps;

public woid execute () {
ps.addPayment (5) ;
H

CS@AU Henrik Baerbak Christensen 4

{

Y
AARHUS UNIVERSITET Demo

AFF L concrete command to write text to the document */
class WriteCommand implements Commarnd |
priwvate Document doc:

/** The interface defining the Command role */
interface Command {

public vold execute(); private String line:
public vold undo () ; public WriteCommand (Document doc, Itring line)
} thisz.doc = doc; thi=s.line = line;
}

public woid execute () |
doc.write(line) ;
H
/*%* This class is a simple document, it acts as the public woid undoil {
. . . . _ . doc.erase(line) ;
* Recelve role in the Command pattern }
W

! }
class Document {

private List<String> contents = new ArrayList<String>(): A*% A glass representing a function kevy on keyboard */

public void write(String text) { class FEey |
contents.add (text); priwvate Command commard:
} AEF azsign a command to the kew */
. . . public woid assign(Command command)] §
public void erase(String text) { thisz.command = command:
contents.remove (text); 1
} AT "press the key™ FF
public String toString() { public woid pressi) |
String result = new String(); command. execute (] ;
for (String line : contents) { ¥

result += line+"'\n"; }
}

return result;

\ 4
AARHUS UNIVERSITET

lproj/frsproject/co d jaua CommandDemo
= Demonstration of Command =
First - using method calls

The command pat

1: Problem
is a pattern that makes behavior an object.

---> Erasing last entered line
Chapter: The command pattern.
Section 1: Problem

t C
The mmand pattern.
1: Problem
is a pattern that makes behavior an object.

F2 reassigned and pressed
Chapter: The command pattern.
Section 1: Problem
Command is a pattern
A wrong line

that makes behavior an object.

Undo of last
Chapter: The command
Section 1: Problem

Command is a pattern that makes behavior an object.

ublic static woid majiniStrineg] arogs) f

Svstem.out.printlni "======= Demonstration of Commarid
Document doc = new Documenti()

String linel = "Chapter: The command pattermn.™:
Ftring lineZz = "ZFection l: Problem™:
String line3 = "Command is a pattern that makes behawior an oblject.™:

S¥stem. out.printlng s======
doc.write(linel) ;
doc.write(lineZz) ;
doc.write(line3) ;

First - using method call

83 =======""

Svwstem.out.printlni doc)

System. out.printlni "---> Erasing last entered line™):
doc.erase(line3) ;

Svstem. out.printlni doc)

S¥stem. out.printlni “======= NextT -
doc = new Documenti(]:
A4 Create the commands

Command writel, writeZ, write3;

commatid aobjects

writel = new WriteCowmmand(doc, linel):
writeZ = new WriteCommand(doc, lineZ):
write3 = new WriteCommandi{doc, line3):

A4 Note - nothing has happened to the docunent yet!
A4 assign bindings to the Fl kewys
FEey Fl = new FEev(), F2 = new FEev() .
assign write commands to the keys
.assigniwritel) ;

.assigni(writed)

.assigniwritel3) ;

F3 = new FEevi()

A4 next press Fl to F3 and see the result in the docum
Fl.press(1: FZ.preszsi(1: Fi.presszi():
Svstem. out.printlni doc)

AS reassigning F2

S¥stem. out.printlng “======= F2 reassigned and pressed
Command writed = new WriteCommand(doc, 4 wrong line™);
FZ.assigm(writed)

Fz.pres=si():

Svstem. out.printlni doc 1;

A4 undoing the last operation

System. out.printlng "======= Tndo of last insert =====
writed.undol) ;

Svstem. out.printlni doc 1;

-

ent

assigned to Fl..

\ 4
AARHUS UNIVERSITET

lproj/frsproject/co d jaua CommandDemo
= Demonstration of Command =
First - using method calls

The command pat

1: Problem
is a pattern that makes behavior an object.

---> Erasing last entered line
Chapter: The command pattern.
Section 1: Problem

t C
The mmand pattern.
1: Problem
is a pattern that makes behavior an object.

F2 reassigned and pressed
Chapter: The command pattern.
Section 1: Problem
Command is a pattern
A wrong line

that makes behavior an object.

Undo of last
Chapter: The command
Section 1: Problem

Command is a pattern that makes behavior an object.

public static wolid main(String[] args) |
Svstem.out.printlni "======= Demonstration of Commarid
Document doc = new Documenti()

String linel = "Chapter: The command pattermn.™:
Ftring lineZz = "ZFection l: Problem™:
String line3 = "Command is a pattern that makes behawior an oblject.™:

S¥stem. out.printlng s======
doc.write(linel) ;
doc.write(lineZz) ;
doc.write(line3) ;

First - using method calls ======="

Svwstem.out.printlni doc)

System. out.printlni "---> Erasing last entered line™):
doc.erase(line3) ;

Svstem. out.printlni doc)

S¥stem. out.printlni “======= NextT -
doc = new Documenti(]:
A4 Create the commands

Command writel, writeZ, write3;

commatid aobjects

writel = new WriteCowmmand(doc, linel):
writeZ = new WriteCommand(doc, lineZ):
write3 = new WriteCommandi{doc, line3):

A4 Note - nothing has happened to the docunent yet!
A4 assign bindings to the Fl kewys
FEey Fl = new FEev(), F2 = new FEev() .
assign write commands to the keys
.assigniwritel) ;

.assigni(writed)

.assigniwritel3) ;

F3 = new FEev():

A4 next press Fl to F3 and see the result in the document
Fl.press(1: FZ.preszsi(1: Fi.presszi():
Svstem. out.printlni doc)

assigned to Fl..

AS reassigning F2

S¥stem. out.printlng "======= FZ reassigned and pressed =======""
Command writed = new WriteCommand(doc, 4 wrong line™);
FZ.assigm(writed)

Fz.pres=si():

Svstem. out.printlni doc 1;

A4 undoing the last operation

Svstem. out.printlnl "======= Undo of last insert =s======""]:
writed.undol) ;

Svstem. out.printlni doc 1;

public static wolid main(String[] args) |

System. out.printlni "======= Demonstration of Command ======="];:
Document doc = new Documenti()
v String linel = "Chapter: The command pattermn.™:
Ftring lineZz = "ZFection l: Problem™:
ﬁ ﬁ RHUS UNIVERS'TET String line3 = "Command is a pattern that makes behawior an oblject.™:
Svstem. out.printlnl "======= First - using method calls =======""];:

doc.write(linel) ;
doc.write(lineZz) ;
doc.write(line3) ;
Svwstem.out.printlni doc)

[proj/frsproject/co ind -demos jaua CommandDemo
= Demonstration of Command =
First - USiﬂg method calls System.out.printlng "---> Erasing last entered line™ j;:
The command pat . doc. erase {line3) ;
1: Problem Svstem. out.printlni doc)

is a pattern that makes behavior an object.

S¥stem. out.println("======= HNext - command aobjects assigned to Fl..F3 =======
---> Erasing last entered line doc = new Document() ;
Chapter: The command pattern. #/ Create the commands
Section 1: Problem Command writel, writeZ, write3;
writel = new WriteCowmmand(doc, linel):
writeZ = new WriteCommand(doc, lineZ):
t = write3 = new WriteCommandi{doc, line3):
The mmand pattern. 4/ Hote - nothing has happened to the document yet!
1: Problem
is a pattern that makes behavior an object. 4/ assign bindings to the Fl keys

FEey Fl = new FEev(), F2 = new FEevy (), F3 = new FEev():
—— . -) A4 assign write commands to the keys

F2 reassigned and pressed Fl.assign{writel] :

Chapter: The command pattern. FZ.assigniwritez] ;

Section 1: Problem Fi.assign(write3);

Command is a pattern that makes behavior an object.
A wrong line A4 next press Fl to F3 and see the result in the document
) = - Fl.prezss(): FZ.pressi(): Fi.presai):

~ Svstem. out.printlni doc)
Undo of last

Chapter: The command ern. A4 reassigming F2

Section 1: Problem J¥stem. out.printlng "======= FZ reassigned and pressed =======""]:

Command is a pattern that makes behavior an object. Command writed = new WriteCommand(doc,™s wrong line™);
FZ.assigm(writed)

Fz.pres=si():

Swstem.out.printlni doc j;:

A4 undoing the last operation

System. out.printlng "======= Undo of last insert =s======"]
writed.undol) ;

Svstem. out.printlni doc 1;

public static wolid main(String[] args) |

System. out.printlni "======= Demonstration of Command ======="];:
Document doc = new Documenti()
v String linel = "Chapter: The command pattermn.™:
Ftring lineZz = "ZFection l: Problem™:
ﬁ ﬁ RHUS UNIVERS'TET String line3 = "Command is a pattern that makes behawior an oblject.™:
Svstem. out.printlnl "======= First - using method calls =======""];:

doc.write(linel) ;
doc.write(lineZz) ;
doc.write(line3) ;
Svwstem.out.printlni doc)

[proj/frsproject/co ind -demos jaua CommandDemo
= Demonstration of Command =
First - USiﬂg method calls System.out.printlng "---> Erasing last entered line™ j;:
The command pat . doc. erase {line3) ;
1: Problem Svstem. out.printlni doc)

is a pattern that makes behavior an object.

S¥stem. out.println("======= HNext - command aobjects assigned to Fl..F3 =======
---> Erasing last entered line doc = new Document() ;
Chapter: The command pattern. #/ Create the commands
Section 1: Problem Command writel, writeZ, write3;
writel = new WriteCowmmand(doc, linel):
writeZ = new WriteCommand(doc, lineZ):
t = write3 = new WriteCommandi{doc, line3):
The mmand pattern. 4/ Hote - nothing has happened to the document yet!
1: Problem
is a pattern that makes behavior an object. 4/ assign bindings to the Fl keys

FEey Fl = new FEev(), F2 = new FEevy (), F3 = new FEev():
o = . -) A4 assign write commands to the keys
F2 reassigned and pressed Fl.assign{writel] :
Chapter: The command pattern. FZ.assigniwritez] ;
Section 1: Problem Fi.assign(write3);
Command is a pattern that makes behavior an object.
A wrong line A4 next press Fl to F3 and see the result in the document
' —— . Fl.pressi(): Fz.press(): Fi.pressi):
- Svstem. out.printlni doc)

Undo of last
Chapter: The command ern. 4/ reassigning F2
Section 1: Problem Jystem.out.printlnf "======= FZ reassigned and pressed =======""]2
Command is a pattern that makes behavior an object. Command writed = new WriteCommand{doc,™i wrong line™):

FZ.assigm(writed)

Fz.pres=si():
Svstem. out.printlni doc 1;

A4 undoing the last operation

System. out.printlng "======= Undo of last insert =s======"]
writed.undol) ;

Svstem. out.printlni doc 1;

/v

AARHUS UNIVERSITET

«interface»

execute()

receiver.action() IS
ConcreteCommand

execute() q

/v

AARHUS UNIVERSITET

Consequences

 Benefits

Decouples clients from set of commands
Command set can be extended at run-time

Easy to support multiple ways to execute command (menu, pop
up, shortcut key, tool bar, ...)

Commands are first-class objects
* Log them, store them
Assembling macros is easy (composite of commands)

Undo can be supported

» Add an ‘unexecute()’ method, and stack the set of executed
commands.

 Liability: Cumbersome code for calling a method

